The k-Barrier Coverage Mechanism in Wireless Visual Sensor Networks

Chih-Yung Chang, Chih-Yao Hsiao
Dept. of Computer Information Science Engineering
Tamkang University, Taiwan
eychang@mail.tku.edu.tw,
eyhsiao@wireless.cs.tku.edu.tw

Chao-Tsun Chang
Dept. of Information Management
Hsiuping University of Science and Technology, Taiwan
cctas@mail.hust.edu.tw

Abstract—Wireless Visual Sensor Networks (WVSNs) consist of a set of camera sensor nodes each of which equips with a camera and is capable of communicating with the other camera sensors within a specific distance range. As an extension of wireless sensor networks (WSNs), the WVSNs can provide richer information such as image and picture during executing targets monitoring and tracking tasks. Since the sensing area of each camera sensor is fan-shaped, existing barrier-coverage algorithms developed for WSNs cannot be applied to the WVSNs. This paper is considering to address the k-barrier coverage problems in WVSNs and to propose a barrier-coverage approach aiming at finding a maximal number of distinct defense curves with each of which consists of as few camera sensors as possible but still guarantees k-barrier coverage. Compared with the related work, experimental study reveals that the proposed k-barrier coverage mechanism constructs more defense curves than the k-barrier coverage and the number of camera sensors participating in each defense curve is smaller.

Keywords—k-barrier coverage; visual sensor networks; wireless sensor networks

I. INTRODUCTION

The k-barrier coverage which definition is that a belt region with a sensor network deployed over it is said to be k-barrier coverage if and only if all crossing paths through the belt are k-covered, which means the crossing paths intersecting with the sensing range of at least k distinct sensors, by the sensor network [5]. In literature, the k-barrier coverage problem has been widely discussed in the wireless sensor networks (WSNs) in the past few years. As an extension of WSNs, the wireless visual sensor networks (WVSNs) consists of visual sensor nodes. Compared with the traditional sensor node in the WSNs, each visual sensor node in WVSNs equips with a camera which provides rich information. Different from traditional sensor, the sensing range of visual sensor node is a Field of View (FoV) in camera’s lens, which can be viewed as a fan-shaped. Hence the existing barrier-coverage algorithms [1][2][5] developed for WSNs cannot be applied to the WVSNs.

In the past few years, barrier coverage problem in WVSNs has attracted much attention. Since the images of camera nodes will be further processed in the sink node, most of the existing approaches aim to reduce the number of active camera sensors for reducing the computing loads at the sink node. Ma et al. [3] proposed a deployment mechanism which maintains connectivity between cameras sensors. However, the authors did not consider how to construct a defense curves from beginning to the end. Zhang et al. [4] introduced the concepts of strong and weak camera barrier. The study initially transformed the barrier coverage problem into an integer linear programming formulation. Then, it proposed a barrier coverage mechanism where each cluster header constructs the defense curve by combining each fragment of defense curves. Nevertheless, the research did not take into consideration the k-coverage problem for $k \geq 2$. Furthermore, the proposed approach did not find out the defense curves as many as possible. Shih et al. [6] constructed the defense curves for barrier coverage according to the geographical relations of neighboring sensors. However, the discovered defense curves only support 1-covered barrier which constrains the monitoring quality. In addition, there is only one defense curve constructed by the proposed approach. Camera sensors that participate in the defense curve should always work. A barrier coverage mechanism that intends to schedule different sets of camera sensors working in turns should construct more than one defense curves. Furthermore, the number of camera sensors that construct the defense curve can be further reduced.

This paper aims to develop a decentralized algorithm to cope with the k-barrier coverage problem. Initially, the network region will be partitioned into grids, aiming to simplify the k-barrier coverage problem. Then a Basic Algorithm (BA) is proposed aiming to construct a number of defense curves each is composed of minimum number of visual sensor nodes but supports k-barrier coverage. Based on the proposed BA, the Branch Algorithm (BRA) is further proposed for constructing more defense curve with the capability of k-barrier coverage. As a result, visual sensor nodes belonging to the constructed defense curves can be active in turn to achieve the load balance purpose. The remainder of this paper is organized as follows.
Section 2 introduces the network environment and assumption. Section 3 gives the detailed description on how to select visual sensor nodes to form \(k \)-barrier coverage in an arbitrary deployed WVSN. Section 4 presents the simulation results while Section 5 concludes this paper.

II. NETWORK ENVIRONMENT AND ASSUMPTION

In this paper, the monitoring region of the WVSN is considered to a rectangle region \(R \). The size of region \(R \) is \(W \times L \), where \(W \) and \(L \) are the width and length of the region. The notations \(L_N, L_S, L_E, L_W \) denote the north, south, east and west boundaries of \(R \). There are \(n \) visual sensor nodes \(U = \{ v_1, \ldots, v_n \} \) randomly deployed in the WVSN. Each visual sensor node \(v_i \) has a unique ID and is aware of its own location and the boundary coordinates of \(R \). Furthermore, each \(v_i \) collects the IDs and location information of its neighboring visual sensor nodes through the exchange of the beacon with one hop neighbors. The movement trajectory that starts from \(L_S \) to \(L_E \) and crosses the width of \(R \) is called a valid crossing path in the WVSN. The monitoring region \(R \) is with \(k \)-barrier coverage if any valid crossing path in \(R \) is detected by at least \(k \) visual sensor nodes. Let \(DB^k \) be a defense barrier with degree \(k \). The \(DB^k \) is composed of \(k \) disjoint defense barriers \(DB^k \)'s that support \(k \)-barrier coverage. The following introduces the proposed \(k \)-BCC algorithm for constructing \(DB^k \).

III. THE PROPOSED \(k \)-BARRIER COVERAGE CONSTRUCTION ALGORITHM (\(k \)-BCC)

The proposed \(k \)-BCC algorithm can be divided into two phases. In the Initialization phase, the network is partitioned into a number of equal-sized grids. The second phase, called \(k \)-Barrier Construction (BC) phase, aims to construct a defense barrier \(DB^k \).

Notation \(g_{m,n} \) represents the grid with coordinates \((m, n)\). Each visual sensor node in this phase will firstly identify the coordinates of the located grid. Since the sensing range can cover more than one grid, a grid might be commonly covered by several visual sensor nodes. Another important task of each visual sensor node in the Initialization phase is to evaluate the coverage degree of the grid it covers. The following defines Fully Cover Grids of \(v_x \).

Definition: Fully Covered Set of \(v_x \): \(G_x \)

A grid \(g_{m,n} \) is a fully covered grid of \(v_x \) if the grid \(g_{m,n} \) is fully covered by \(v_x \). The fully covered set of \(v_x \), denoted by \(G_x \), consists of all grids that are fully covered by \(v_x \).

In Fig. 2, the symbols marked in each grid represent the IDs of the visual sensor nodes whose sensing ranges can fully cover that grid. As shown in Fig. 2, grids \(g_{2,2}, g_{2,3}, g_{3,2}, \) and \(g_{3,3} \) are fully covered by \(v_a \) while grids \(g_{3,2}, g_{3,3}, \) and \(g_{3,4} \) are fully covered by \(v_b \). Therefore, we have \(G_a = \{ g_{2,2}, g_{2,3}, g_{3,2}, g_{3,3} \} \) and \(G_b = \{ g_{2,2}, g_{3,2}, g_{3,3}, g_{3,4} \} \). Since a field-of-view (FoV) angle and an orientation vector of camera lens are known by each visual sensor node, each \(v_i \) can evaluate its own \(G_i \). Besides, each sensor \(v_i \) can evaluate the coverage degree of each grid \(g_{m,n} \in G_i \) based on the neighboring information of \(v_i \).

Herein, a grid \(g_{m,n} \) is said to be \(p \)-covered if the number of coverage is \(p \) that is covered by \(p \) visual sensors. The partition of the network region into a number of equal-sized grids can simplify the \(k \)-barrier coverage problem.

B. Barrier Construction (BC) phase

The Barrier Construction (BC) phase aims to construct a \(DB^k \) based on the grid-based network depicted in the Initialization Phase. In conceptual level, the \(DB^k \) is composed of a sequence of interconnected segments. The BC phase will construct the \(DB^k \) segment by segment from the boundary \(L_W \) to the boundary \(L_E \) of the monitoring region \(R \). Each segment is composed of several connected grids. These grids should satisfy the \(k \)-covered requirement which is contributed by a set of visual sensors, called best working set. Let the starting grid and ending grid of a segment be the leftmost and rightmost grids of the segment, respectively. To connect the neighboring segments, the starting grid of the successive segment should neighbor to the ending grid of the previous segment. Therefore, a \(DB^k \) can be constructed by a sequence of interconnected segments. For accomplish a \(DB^k \), in each segment, a visual sensor \(v_x \) are selected to be the Decision Maker (DM) for executing the operations proposed in BC phase. Consider the grid \(g_{m,n} \). The visual sensor nodes that can fully cover \(g_{m,n} \) are called DM candidates of \(g_{m,n} \). The DM of the \(g_{m,n} \) is the DM candidate that has the largest number of neighbors. Note that, the DM of a \(g_{m,n} \) is not necessarily located in the \(g_{m,n} \) because that the sensing range of \(v_x \) might fully cover several grids. In
the BC phase, two approaches, including Basic Approach (BA), Basic and Branch Approach (BRA), are proposed to implement the BC phase.

1) Basic Approach (BA)

The following proposes a Basic Approach (BA) for constructing a DB^2. Recall that, the DB^2 is constructed in a manner of segment by segment. Let a grid $g_{n,m}$, that is currently considered by BA approach be called current grid, denoted by g_{current}. Let the DM of $g_{n,m}$ be called DM_{current}, or DM_{current} in short. The BA approach considers a grid $g_{n,m}$ at a time and tries to find a set of k visual sensors, which is also referred to as the best working set $\hat{q}_{n,m}$, to monitor the grid $g_{n,m}$ and the other grids covered by all visual sensors in the same $g_{n,m}$. Let there be w candidate working sets of $g_{n,m}$, which are denoted by the notations $q_{n,m}^{k,j}$, where $1 \leq j \leq w$. Let $Q_{n,m}^{w} = \{q_{n,m}^{k,j} | 1 \leq j \leq w\}$ denote the set of w candidate working sets. The DM_{current} will be responsible for selecting the best working set $\hat{q}_{n,m}^{k,j}$ from set $Q_{n,m}^{w}$. For selecting the $\hat{q}_{n,m}^{k,j}$, a process in BA called Best Working Set Construction Process is described below.

![Figure 3: An example of constructing DB^2 by BA](image)

a) Best Working Set Construction Process :

The following illustrates how DM_{current} selects the best working set $\hat{q}_{n,m}^{k,j}$. The policy for determining the $\hat{q}_{n,m}^{k,j}$ is based on the contribution of each candidate working set $q_{n,m}^{k,j}$. The evaluation of contribution is described below. A grid $g_{a,b}$ is an extended grid of $q_{n,m}^{k,j}$ if both grids $g_{a,b}$ and $g_{n,m}$ are fully covered by all visual sensors in $q_{n,m}^{k,j}$. Let notation $g_{a,b}^{k,j,m,n}$ denote an extended grid $g_{a,b}$ of candidate working set $q_{n,m}^{k,j}$. Note that the $g_{n,m}$ is not an extended grid which belong to any $q_{n,m}^{k,j}$. The contribution is evaluated by relative position between $g_{n,m}$ and $g_{a,b}^{k,j,m,n}$. The weighted distance d between relative positions is evaluated by Eqn. (1).

$$d(g_{n,m}, g_{a,b}^{k,j,m,n}) = (n - \beta) + (\alpha - m) \cdot \text{Max}(W, L). \tag{1}$$

where W and L are the width and length of region R, respectively. The grid $g_{a,b}^{k,j,m,n}$ closer boundary L_E has a larger weighted distance d and thus is considered has a larger contribution. This is because that the weighted distance is the length of barrier coverage contributed by the working set $q_{n,m}^{k,j}$. A larger d contributed by the candidate working set $q_{n,m}^{k,j}$ also means the defense barrier requires fewer visual sensor nodes. In Eqn. (1), the multiplication of $\text{Max}(W, L)$ and $(\alpha - m)$ is to emphasize the distance increasing in the direction of x-axis since a straight barrier is the most appreciated in constructing the barrier. Let farthest extended grid $\hat{g}_{a,b}^{k,j,m,n}$ be the extended grid $g_{a,b}^{k,j,m,n}$ that is with highest d.

Applying Eqn. (1), the $\hat{g}_{a,b}^{k,j,m,n}$ located in upper right corner of region R will have the largest contribution than the other contribution of extended grids in $E_{n,m}$. Therefore, the candidate working set $q_{n,m}^{k,j}$ that can fully cover the grid $\hat{g}_{a,b}^{k,j,m,n}$ will have the largest contribution and will be selected as the $\hat{q}_{n,m}^{k,j}$ by DM_{current}. Then the grids covered by all visual sensors in $\hat{q}_{n,m}^{k,j}$ will become defense grids. These selected defense grids can be treated as a constructed segment of DB^2.

Recall that the DB^2 is constructed segment by segment. The current grid $g_{n,m}^{\text{current}}$ and the farthest extended grid $\hat{g}_{a,b}^{k,j,m,n}$ will be the starting grid and ending grid of the constructed segment, respectively. The next step of BA approach is to construct the next segment which connects to the previous one. To accomplish this, the DM_{current} will select a proper starting grid of the next segment. Let $g_{n,m}^{\text{next}}$ be the starting grid of the next segment. Then the best working set construction process and the $g_{n,m}^{\text{next}}$ selection process (discussed later), will be recursively performed to construct the next segment. As a result, the DB^2 can be constructed by recursively executing the above-mentioned procedure until a constructed segment reaches the boundary L_E.

b) Start Grid Selection Process :

The policy for DM_{current} to select the $g_{n,m}^{\text{next}}$ is described below. Let the constructed segment be S_i and the next segment be denoted by S_{i+1}. The starting grid of segment S_{i+1} should be able to connect to the ending grid of segment S_i. The grids whose coordinate are $\hat{g}_{a,b}^{k,j,m,n}$, where $1 \leq m \leq W$ and $1 \leq n \leq L$, are called the candidate starting grids of segment S_{i+1}. To fully support the k-barrier coverage, the selected starting grid $g_{n,m}^{\text{next}}$ should be k-covered. The DM_{current} will arbitrarly select the starting grid $g_{n,m}^{\text{next}}$ from the candidate starting grids of segment S_{i+1} where $g_{n,m}^{\text{next}}$ is k-covered.

Figure 3 depicts an example of constructing DB^2. In Fig. 3, the grid $g_{1,i}$ is the starting grid where has $w=3$ candidate working sets $q_{a,2}^{1,i} = \{g_{1,x} | x \leq 3\}$, $q_{a,2}^{2,i} = \{g_{a,x} | x \leq 3\}$ and $q_{a,2}^{3,i} = \{g_{a,x} | x \leq 3\}$. Besides, the extended grids of $q_{a,2}^{1,i}$, $q_{a,2}^{2,i}$ and $q_{a,2}^{3,i}$ are $\{g_{a,b} | a \leq 2, b \leq 3\}$, $\{g_{a,b} | a \leq 2, b \leq 3\}$ and $\{g_{a,b} | a \leq 2, b \leq 3\}$, respectively. The farthest extended grid of $q_{a,2}^{1,i}$, $q_{a,2}^{2,i}$ and $q_{a,2}^{3,i}$ are $\{g_{a,b} | a \leq 2, b \leq 3\}$, $\{g_{a,b} | a \leq 2, b \leq 3\}$ and $\{g_{a,b} | a \leq 2, b \leq 3\}$, respectively. By applying formula (1), the contribution of $q_{a,2}^{1,i}$, $q_{a,2}^{2,i}$ and $q_{a,2}^{3,i}$ are 12, $-\infty$ and 1, respectively. The contributions of these grids are evaluated based on the following
calculations.
\[
q_{1,2}^{2,1} : d(g_{1,2}, g_{2,1,2}) = (2 - 2) + (3 - 1) \cdot \max(3, 6) = 12
\]
\[
q_{1,2}^{3,2} : d(g_{1,2}, g_{2,1,3}) = (2 - 2) + (1 - 1) \cdot \max(3, 6) = 1
\]

As the result, the \(g_{1,2}^{3,2} = \{s_x, s_y\} \) will be selected as the best working set by \(D\) for being in charge of monitoring the segment between \(g_{1,2} \) and \(g_{3,2} \). Then the \(D\) will select the \(g_{4,1} \) which is satisfied 2-covered to be the next start grid of segment. The recursive operation will keep running the above-mentioned procedure until a grid that reach the boundary \(L_E \) is selected and the \(D\) will be constructed by \(B\).

The major advantage of \(B\) is simple and easy to be implemented. However, only those grids that are at least \(k\)-covered will be invited to join the \(D\). The next subsection proposes a Branch Approach aiming to fully utilize the grids that do not satisfy the \(k\)-covered requirement.

2) Branch Approach (BA)

The main idea of \(B\) is to give more opportunities for the neighboring grids to join the \(D\) even though each of the neighboring grids contains less than \(k\)-covered. Since the random deployment might cause an imbalanced distribution of visual sensor nodes, the coverage degree in each grid might be different. Though some grids contain less than \(k\) coverage, they can contribute their potential coverage for constructing a \(D\). In constructing a \(D\), the \(B\) did not consider those grids whose coverage degree is less than \(k\).

Recall that, a curve with \(D\) can have \(k\) branches \(D_1, D_2, \ldots, D_k \) from some grids. Let weak grid represents the grid whose coverage degree is less than \(k\). A grid with at least \(k\)-coverage is called qualified grid. The \(B\) can construct more defense barriers with the \(D\) than \(B\) by inviting weak grids to join the \(D\) when all neighboring grids of \(D\) are weak grids. That is, the \(B\) gives more opportunities for the weak grids to join the \(D\) and hence balances the workload of visual sensor nodes. Similar to \(B\), the \(B\) selects a qualified grid from the leftmost column to the rightmost column. As soon as a \(D\) fails to find a qualified grid from its neighboring grids, it tries to select some weak grids \(g_{m+1,n}, g_{m+1,n+1} \) and \(g_{m+1,n+1} \) that satisfy Condition (2). Herein, we assume that the \(D\) of \(g_{m,n} \) cannot find any grid satisfying \(k\)-coverage requirement.

\[
\left| C_{m+1,n-1} \cup C_{m+1,n} \cup C_{m+1,n+1} \right| \geq k
\]

where the notation \(C_{m,n-1}, C_{m,n}, \) and \(C_{m+1,n+1} \) denotes the numbers of different IDs in \(g_{m+1,n}, g_{m+1,n} \) and \(g_{m+1,n+1} \), respectively. The total number of these grids should greater than or equal to \(k\)-covered requirement. That is to say that these grids can be gathered as a set for achieving the \(k\)-covered requirement in column \((m+1)\). However, the \(B\) aims to find a set of neighboring grids so that their coverage can cooperatively contribute \(k\)-coverage. In \(B\), the \(D\)s of the selected grids will execute the \(B\) until the boundary \(L_E \) is reached.

Figure 4 gives an example for constructing a \(D\) by applying \(B\). Herein, We assume that the segment between \(g_{1,2} \) and \(g_{3,2} \) is already covered by best working set \(\{v_x, v_y, v_z\} \). Then the \(D\) will select the next starting grid from candidate starting grids. However, it cannot find any feasible neighboring grid that satisfies 3-covered requirement. Different from the \(B\), when the \(B\) fails to find a qualified grid from its neighboring grids, it considers the weak grids for constructing as more as possible \(D\). As shown in Fig. 4, the \(D\) initially a branch procedure trying to invite the weak grids \(g_{5,1}, g_{5,2} \) and \(g_{5,3} \) to satisfy the 3-coverage requirement. After \(D\) checks the total number of visual sensor nodes in weak grids \(g_{5,1}, g_{5,2} \) and \(g_{5,3} \), it sends a branch message which contains its own location and the required coverage degree for each selected weak grid. In this example, the \(D\) of \(g_{5,1}, g_{5,2} \) and \(g_{5,3} \) will be notified that the required coverage degrees are 1. Upon obtaining the construction authority, the \(D\)s of \(g_{5,1}, g_{5,2} \) and \(g_{5,3} \) individually apply the same \(B\) approach to construct the \(D_1, D_2 \) and \(D_3 \), respectively. By applying the \(B\), a branched \(D\) can be successfully constructed.

The \(B\) approach not only improves the defense strength of barrier coverage but also balances the workload of visual sensor nodes.

<table>
<thead>
<tr>
<th>Table 1. Simulation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Area</td>
</tr>
<tr>
<td>Number of VSNs</td>
</tr>
<tr>
<td>Grid Size</td>
</tr>
<tr>
<td>Sensing Radius</td>
</tr>
<tr>
<td>Comm. Radius</td>
</tr>
<tr>
<td>FoV</td>
</tr>
<tr>
<td>Deployment</td>
</tr>
</tbody>
</table>
IV. SIMULATION

This section studies the performance of the proposed BA and BRA approaches against the Maximum Disjoint Paths (MDP) mechanism which is a centralized algorithm proposed in [7]. The MDP finds \(k \) starting and terminal points at the left and right boundaries, respectively. For each combinatorial pair of starting and end points, MDP constructs a shortest path that is disjoint with the other paths constructed previously. The number of combination pairs will be \(k^2 \). Then the MDP selects the constructed \(k \) disjoint paths as the solution of DB\(^k\). Since the MDP is a centralized algorithm with considering a large number of possible solutions, it will be treated as the optimal solution. To investigate how far the proposed BA and BRA approaches closed to the optimal solution in terms of number of participated visual sensors, the proposed three approached will be compared with the MDP. The simulation parameters used in our simulation is shown in Table 1.

![Figure 5: The average numbers of DB\(^2\) constructed by applying BA, BRA and MDP.](image)

Figure 5 investigates the average numbers of DB\(^2\) constructed by applying BA, BRA and MDP by varying the number of deployed visual sensor nodes ranging from 300 to 600. The BRA adopts branch policy to further invite the weak grids participating in the defense barrier. Therefore, the BRA outperforms BA and approaches to the optimal performance produced by MDP.

![Figure 6: The success rate of constructing a DB\(^3\) by applying BA, BRA and MDP.](image)

Figure 6 shows the success rate of constructing a DB\(^3\) by applying the proposed BA, BRA and the existing MDP. The success rate of constructing a DB\(^3\) is decreased with the size of grid and is decreased with the degree of FoV. The major reason is that the smaller size of grids will increase the number of grids fully covered by each visual sensor node. As a result, there are more candidate working sets can be selected in each grid. Besides, larger degree of FoV can fully cover more grids and hence results in more candidate working sets can be considered. These candidate working sets can be further utilized by DM\(^\text{current}\) to construct DB\(^k\) easier when the number of visual sensors is limited.

V. CONCLUSION

Barrier Coverage is an important issue in defense and intruder detection applications. This issue especially important and has a big challenge when the \(k \)-barrier coverage would be constructed by the visual sensors which improve the monitoring quality by providing the image information. This paper presents a \(k \)-barrier coverage algorithm with two barrier-construction policies, called BA and BRA. Initially the network region is partitioned into grids to simplify the investigated problem. Then a decentralized BA mechanism is proposed to cope with the \(k \)-barrier coverage problem. In addition to BA, the BRA mechanism that adopts branch police is proposed to further improve the performance of BA. Simulation study reveals that the proposed BRA outperforms BA and likely approaches to the optimal performance of constructing a DB\(^k\) in case of \(k \geq 2 \).

REFERENCES

